Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur-arene interaction as key to catalysis.

نویسندگان

  • Shi-Jing Sun
  • Yoshiki Horikawa
  • Masahisa Wada
  • Junji Sugiyama
  • Tomoya Imai
چکیده

Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherichia coli cells that we recently constructed (cellulose-synthesizing E. coli, CESEC). We demonstrated that inactivating mutations at an important amino acid residue reduced cellulose production. In this study, an interesting loss-of-function mutation occurred on Cys308, whose main chain carbonyl plays an important role for locating the cellulose terminus. Mutating this cysteine to serine, thus changing sulfur to oxygen in the side chain, abolished cellulose production in addition to other apparent detrimental mutations. This unexpected result highlights that the thiol side-chain of this cysteine plays an active role in catalysis, and additional mutation experiments indicated that the sulfur-arene interaction around Cys308 is a key in cellulose-synthesizing activity. Data obtained by CESEC shed light on the function of cellulose synthase in living cells, and will deepen our understanding of the mechanism of cellulose synthase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lackin...

متن کامل

Site-directed mutagenesis of proline-285 to leucine in Cephalosporium acremonium isopenicillin-N-synthase affects catalysis and increases soluble expression at higher temperatures.

The conversion of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N is dependant on the catalytic action of isopenicillin N-synthase (IPNS), an important enzyme in the penicillin and cephalosporin biosynthetic pathway. One of the amino acid residues suggested by the Aspergillus nidulans IPNS crystal structure for interaction with the valine isopropyl group of ACV is prol...

متن کامل

Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis.

RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium Streptomyces griseus. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn c...

متن کامل

Site-Directed Mutagenesis in Human Granulocyte-colony Stimulating Factor, Cloning and Expression in Escherichia coli

Human granulocyte colony stimulating factor (hG-CSF) induces proliferation and differentiation of granulocyte progenitor cells. This glycoprotein is currently being used for treatment of neutropenia, in patients who have undergone bone marrow transplantation. So far, different researchers have tried to enhance hG-CSF biological activity and stability. In this study, Polymerase Chain Reaction (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carbohydrate research

دوره 434  شماره 

صفحات  -

تاریخ انتشار 2016